Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 462
Filtrar
1.
J Agric Food Chem ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38661642

RESUMO

Authenticating whole wheat foods poses a significant challenge for both the grain industry and consumers. Alkylresorcinols (ARs), serving as biomarkers of whole wheat, play a crucial role in assessing the authenticity of whole wheat foods. Herein, we introduce a novel molecularly imprinted electrochemical sensor with modifications involving a molecularly imprinted polymer (MIP) and MXene nanosheets, enabling highly sensitive and selective detection of ARs. Notably, we specifically chose 5-heneicosylresorcinol (AR21), the predominant homologue in whole wheat, as the template molecule. α-Cyclodextrin and acrylamide served as dual functional monomers, establishing a robust multiple interaction between the MIP and AR21. As a result, the sensor exhibited a wide linear range of 0.005 to 100 µg·mL-1 and a low detection limit of 2.52 ng·mL-1, demonstrating exceptional selectivity and stability. When applied to commercial whole wheat foods, the assay achieved satisfactory recoveries and accuracy, strongly validating the practicality and effectiveness of this analytical technique.

2.
Se Pu ; 42(4): 333-344, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38566422

RESUMO

17ß-Estradiol (E2), an important endocrine hormone in the mammalian body, participates in the regulation of the physiological functions of the reproductive system, mammary glands, bone, and cardiovascular system, among others. Paradoxically, despite the physiological actions of endogenous E2 (0.2-1.0 nmol/L), numerous clinical and experimental studies have demonstrated that high-dose E2 treatment can cause tumor regression and exert pro-apoptotic actions in multiple cell types; however, the underlying mechanism remains undescribed. In particular, little information of the cellular processes responding to the lethality of E2 is available. In the present study, we attempted to characterize the cellular processes responding to high-dose (µmol/L) E2 treatment using quantitative phosphoproteomics to obtain a better understanding of the regulatory mechanism of E2-induced cell death. First, the cell phenotype induced by high-dose E2 was determined by performing Cell Counting Kit-8 assay (CCK8), cell cytotoxicity analysis by trypan blue staining, and microscopic imaging on HeLa cells treated with 1-10 µmol/L E2 or dimethyl sulfoxide (DMSO) for 1-3 d. E2 inhibited cell proliferation and induced cell death in a dose- and time-dependent manner. Compared with the DMSO-treated HeLa cells, the cells treated with 5 µmol/L E2 for 2 d demonstrated >74% growth inhibition and approximately 50% cell death. Thus, these cells were used for quantitative phosphoproteomic analysis. Next, a solid-phase extraction (SPE)-based immobilized titanium ion affinity chromatography (Ti4+-IMAC) phosphopeptide-enrichment method coupled with data-independent acquisition (DIA)-based quantitative proteomics was employed for the in-depth screening of high-dose E2-regulated phosphorylation sites to investigate the intracellular processes responding to high-dose E2 treatment. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) identified over 10000 phosphorylation sites regulated by E2 and DMSO in HeLa cells. In comparison with the DMSO-treated cells, the cells treated with 5 µmol/L E2 showed 537 upregulated phosphorylation sites and 387 downregulated phosphorylation sites, with a threshold of p<0.01 and |log2(fold change)|≥1. A total of 924 phosphorylation sites on 599 proteins were significantly regulated by high-dose E2, and these sites were subjected to enrichment analysis. In addition, 453 differently regulated phosphorylation sites on 325 proteins were identified only in the E2- or DMSO-treated cell samples. These phosphorylation sites may be phosphorylated or dephosphorylated in response to high-dose E2 stimulation and were subjected to parallel enrichment analyses. Taken together, 1218 phosphorylation sites on 741 proteins were significantly regulated by high-dose E2 treatment. The functional phosphoproteins in these two groups were then analyzed using Gene Ontology (GO) and Gene Set Enrichment Analysis (GSEA) to determine the biological processes in which they participate and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database. Consistent with the cell-phenotype data, cell cycle-related proteins were highly enriched in the two groups of E2-regulated phosphoproteins (p<0.05), indicating that high-dose E2 treatment can regulate cell proliferation. In addition, E2-regulated phosphoproteins were highly enriched in the cellular processes of ribosome biogenesis, nucleocytoplasmic transport, and messenger ribonucleic acid (mRNA) processing/splicing (p<0.05), indicating that the activation of these processes may contribute to high-dose E2-induced cell death. These results further confirm that high-dose E2 treatment inhibits protein translation and induces cell death. Furthermore, the significant upregulation of multiple phosphorylation sites associated with epidermal growth factor receptor (EGFR) and mitogen-activated protein kinases (MAPKs) MAPK1, MAPK4, and MAPK14 by high-dose E2 indicates that the EGFR and MAPK signaling pathways are likely involved in the regulation of E2-induced cell death. These phosphorylation sites likely play vital roles in E2-induced cell death in HeLa cells. Overall, our phosphoproteomic data could be a valuable resource for uncovering the regulatory mechanisms of E2 in the micromolar range.


Assuntos
Dimetil Sulfóxido , Espectrometria de Massas em Tandem , Animais , Humanos , Cromatografia Líquida , Células HeLa , Estradiol/farmacologia , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Receptores ErbB/metabolismo , Fosforilação , Mamíferos/metabolismo
3.
MedComm (2020) ; 5(4): e543, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38585233

RESUMO

High metastatic propensity of osteosarcoma leads to its therapeutic failure and poor prognosis. Although nuclear activation miRNAs (NamiRNAs) are reported to activate gene transcription via targeting enhancer and further promote tumor metastasis, it remains uncertain whether NamiRNAs regulate osteosarcoma metastasis and their exact mechanism. Here, we found that extracellular vesicles of the malignant osteosarcoma cells (143B) remarkably increased the migratory abilities of MNNG cells representing the benign osteosarcoma cells by two folds, which attributed to their high miR-1246 levels. Specially, miR-1246 located in nucleus could activate the migration gene expression (such as MMP1) to accelerate MNNG cell migration through elevating the enhancer activities via increasing H3K27ac enrichment. Instead, MMP1 expression was dramatically inhibited after Argonaute 2 (AGO2) knockdown. Notably, in vitro assays demonstrated that AGO2 recognized the hybrids of miR-1246 and its enhancer DNA via PAZ domains to prevent their degradation from RNase H and these protective roles of AGO2 may favor the gene activation by miR-1246 in vivo. Collectively, our findings suggest that miR-1246 could facilitate osteosarcoma metastasis through interacting with enhancer to activate gene expression dependent on AGO2, highlighting the nuclear AGO2 as a guardian for NamiRNA-targeted gene activation and the potential of miR-1246 for osteosarcoma metastasis therapy.

4.
Blood ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38635762

RESUMO

Axicabtagene ciloleucel (axi-cel) is an autologous anti-CD19 chimeric antigen receptor (CAR) T-cell therapy approved for treatment of relapsed/refractory (R/R) large B-cell lymphoma (LBCL). Despite extensive data supporting the use of axi-cel in patients with LBCL, outcomes stratified by race and ethnicity groups are limited. Here, we report clinical outcomes with axi-cel in patients with R/R LBCL by race and ethnicity in both real-world and clinical trial settings. In the real-world setting, 1290 patients with R/R LBCL who received axi-cel between 2017-2020 were identified from the Center for International Blood and Marrow Transplant Research database; 106 and 169 patients were included from the ZUMA-1 and ZUMA-7 clinical trials, respectively. Adjusted odds ratio (OR) and hazard ratio (HR) for race and ethnicity groups are reported. Overall survival was consistent across race/ethnicity groups. However, non-Hispanic (NH) Black patients had lower overall response rate (OR, 0.37, [95% CI, 0.22-0.63]) and lower complete response rate (OR, 0.57, [95% CI, 0.33-0.97]) than NH-white patients. NH-Black patients also had a shorter progression-free survival versus NH-white (HR, 1.41, [95% CI, 1.04-1.90]) and NH-Asian patients (HR, 1.67, [95% CI, 1.08-2.59]). NH-Asian patients had a longer duration of response compared with NH-white (HR, 0.56, [95% CI, 0.33-0.94]) and Hispanic patients (HR, 0.54, [95% CI, 0.30-0.97]). There was no difference in cytokine release syndrome by race/ethnicity; however, higher rates of any-grade ICANS were observed in NH-white patients compared with other patients. These results provide important context when treating patients with R/R LBCL with axi-cel across different racial and ethnic groups. ZUMA-1 (NCT02348216) and ZUMA-7 (NCT03391466), both registered on ClinicalTrials.gov.

5.
IEEE Trans Image Process ; 33: 2835-2850, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38598373

RESUMO

Within the tensor singular value decomposition (T-SVD) framework, existing robust low-rank tensor completion approaches have made great achievements in various areas of science and engineering. Nevertheless, these methods involve the T-SVD based low-rank approximation, which suffers from high computational costs when dealing with large-scale tensor data. Moreover, most of them are only applicable to third-order tensors. Against these issues, in this article, two efficient low-rank tensor approximation approaches fusing random projection techniques are first devised under the order-d ( d ≥ 3 ) T-SVD framework. Theoretical results on error bounds for the proposed randomized algorithms are provided. On this basis, we then further investigate the robust high-order tensor completion problem, in which a double nonconvex model along with its corresponding fast optimization algorithms with convergence guarantees are developed. Experimental results on large-scale synthetic and real tensor data illustrate that the proposed method outperforms other state-of-the-art approaches in terms of both computational efficiency and estimated precision.

6.
Sci China Life Sci ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38478296

RESUMO

RNA N6-methyladenosine (m6A), as the most abundant modification of messenger RNA, can modulate insect behaviors, but its specific roles in aggregation behaviors remain unexplored. Here, we conducted a comprehensive molecular and physiological characterization of the individual components of the methyltransferase and demethylase in the migratory locust Locusta migratoria. Our results demonstrated that METTL3, METTL14 and ALKBH5 were dominantly expressed in the brain and exhibited remarkable responses to crowding or isolation. The individual knockdown of methyltransferases (i.e., METTL3 and METTL14) promoted locust movement and conspecific attraction, whereas ALKBH5 knockdown induced a behavioral shift toward the solitary phase. Furthermore, global transcriptome profiles revealed that m6A modification could regulate the orchestration of gene expression to fine tune the behavioral aggregation of locusts. In summary, our in vivo characterization of the m6A functions in migratory locusts clearly demonstrated the crucial roles of the m6A pathway in effectively modulating aggregation behaviors.

7.
Am J Hematol ; 99(5): 880-889, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38504387

RESUMO

Axicabtagene ciloleucel (axi-cel) in trials has demonstrated favorable efficacy compared with historical controls after ≥2 lines of therapy for the treatment of relapsed or refractory (R/R) large B cell lymphoma (LBCL). Herein, we compared the real-world effectiveness of axi-cel with efficacy and effectiveness of chemoimmunotherapy (CIT) in patients aged ≥65 years and patients with Eastern Cooperative Oncology Group performance status (ECOG PS) of 2. A total of 1146 patients treated with commercial axi-cel for R/R LBCL with ≥2 lines of prior therapy were included from the Center for International Blood and Marrow Transplantation Research prospective observational study, and 469 patients treated with CIT for R/R LBCL after ≥2 lines of prior therapy were included from SCHOLAR-1 (an international, multicohort, retrospective study). After propensity score matching, at a median follow-up of 24 months for patients receiving axi-cel and 60 months for patients receiving CIT, 12-month overall survival rates were 62% and 28%, respectively (hazard ratio, 0.30 [95% CI, 0.24-0.37]). Objective response rate (ORR) was 76% (complete response [CR] rate 58%) in patients receiving axi-cel versus 28% (CR rate 16%) for those receiving CIT. A 57% difference in ORR (55% difference in CR rate) favoring axi-cel over CIT was observed among patients aged ≥65 years. Increased magnitude of benefit in response rates for axi-cel versus CIT was also observed among patients with ECOG PS = 2. These findings further support the broader use of axi-cel in older patients and patients with ECOG PS = 2 with R/R LBCL.


Assuntos
Produtos Biológicos , Linfoma Difuso de Grandes Células B , Humanos , Idoso , Estudos Retrospectivos , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Produtos Biológicos/uso terapêutico , 60410 , Imunoterapia Adotiva , Antígenos CD19
8.
Environ Pollut ; 347: 123743, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38462195

RESUMO

Newly synthesized chemicals are being introduced into the environment without undergoing proper toxicological evaluation, particularly in terms of their effects on the vulnerable neurodevelopment. Thus, it is important to carefully assess the developmental neurotoxicity of these novel environmental contaminants using methods that are closely relevant to human physiology. This study comparatively evaluated the potential developmental neurotoxicity of 19 prevalent environmental chemicals including neonicotinoids (NEOs), organophosphate esters (OPEs), and synthetic phenolic antioxidants (SPAs) at environment-relevant doses (100 nM and 1 µM), using three commonly employed in vitro neurotoxicity models: human neural stem cells (NSCs), as well as the SK-N-SH and PC12 cell lines. Our results showed that NSCs were more sensitive than SK-N-SH and PC12 cell lines. Among all the chemicals tested, the two NEOs imidaclothiz (IMZ) and cycloxaprid (CYC), as well as the OPE tris(1,3-dichloro-2-propyl) phosphate (TDCIPP), generated the most noticeable perturbation by impairing NSC maintenance and neuronal differentiation, as well as promoting the epithelial-mesenchymal transition process, likely via activating NF-κB signaling. Our data indicate that novel NEOs and OPEs, particularly IMZ, CYC, and TDCIPP, may not be safe alternatives as they can affect NSC maintenance and differentiation, potentially leading to neural tube defects and neuronal differentiation dysplasia in fetuses.


Assuntos
Retardadores de Chama , Humanos , Retardadores de Chama/análise , Organofosfatos/toxicidade , Fosfatos/análise , Diferenciação Celular , Ésteres , Monitoramento Ambiental
9.
Curr Med Chem ; 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38549534

RESUMO

BACKGROUND: Long non-coding RNA (LncRNA) is a type of non-coding RNA that plays an important role in the body and accounts for the majority of RNA, and this non-coding RNA can regulate disease onset and progression with its wide range of functions. LncRNA Xist, also known as the long non-coding RNA X inactive specific transcript, is a member of them. It can regulate the development of organismal diseases by acting downstream on specific target genes. In addition to this, it can also influence disease onset and progression by acting on apoptosis, migration, invasion, and other processes. It has been shown that XIST plays an important role in the development of inflammation. OBJECTIVE: To explore the role played by XIST in inflammation-related diseases and to explore its mechanism of action. METHODS: This paper summarizes and analyzes the role played by XIST in inflammation- related diseases by conducting a search in PubMed. CONCLUSION: In this paper, we summarize the mechanism of action of XIST in different types of inflammation-related diseases and propose new protocols for the future clinical treatment of these diseases.

10.
Sensors (Basel) ; 24(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38544270

RESUMO

The acoustic tomography (AT) velocity field reconstruction technique has become a research hotspot in recent years due to its noninvasive nature, high accuracy, and real-time measurement advantages. However, most of the existing studies are limited to the reconstruction of the velocity field in a rectangular area, and there are very few studies on a circular area, mainly because the layout of acoustic transducers, selection of acoustic paths, and division of measured regions are more difficult in a circular area than in a rectangular area. Therefore, based on AT and using the reconstruction algorithm of the Markov function and singular value decomposition (MK-SVD), this paper proposes a measured regional division optimization algorithm for velocity field reconstruction in a circular area. First, an acoustic path distribution based on the multipath effect is designed to solve the problem of the limited emission angle of the acoustic transducer. On this basis, this paper proposes an adaptive optimization algorithm for measurement area division based on multiple sub-objectives. The steps are as follows: first, two optimization objectives, the condition number of coefficient matrix and the uniformity of acoustic path distribution, were designed. Then, the weights of each sub-objective are calculated using the coefficient of variation (CV). Finally, the measured regional division is optimized based on particle swarm optimization (PSO). The reconstruction effect of the algorithm and the anti-interference ability are verified through the reconstruction experiments of the model velocity field and the simulated velocity field.

12.
Environ Pollut ; 346: 123640, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38401637

RESUMO

Pentachlorophenol (PCP) - cadmium (Cd) complex pollution has been identified as a form of persistent soil pollution in south China, exerting detrimental impacts on the indigenous soil bacterial communities. Hence, it is worthwhile to investigate whether and how bacterial populations alter in response to these pollutants. In this study, Escherichia coli was used as a model bacterium. Results showed that PCP exposure caused bacterial cell membrane permeability changes, intracellular ROS elevation, and DNA fragmentation, and triggered apoptosis-like cell death at low exposure concentration and necrosis at high exposure concentration. Cd exposure caused severe oxidative damage and cell necrosis in the tested bacterial strain. The co-exposure to PCP and Cd elevated the ROS level, stimulated the bacterial caspase activity, and induced DNA fragmentation, thereby leading to an apoptosis-like cell death. In conclusion, PCP-Cd complex pollution can cause bacterial population to decrease through apoptosis-like cell death pathway. However, it is worth noting that the subpopulation survives under the complex pollution stress.


Assuntos
Pentaclorofenol , Humanos , Pentaclorofenol/toxicidade , Pentaclorofenol/metabolismo , Cádmio/toxicidade , Cádmio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Apoptose , Morte Celular , Necrose
13.
Dev Cell ; 59(4): 465-481.e6, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38237590

RESUMO

The progression from naive through formative to primed in vitro pluripotent stem cell states recapitulates epiblast development in vivo during the peri-implantation period of mouse embryo development. Activation of the de novo DNA methyltransferases and reorganization of transcriptional and epigenetic landscapes are key events that occur during these pluripotent state transitions. However, the upstream regulators that coordinate these events are relatively underexplored. Here, using Zfp281 knockout mouse and degron knockin cell models, we identify the direct transcriptional activation of Dnmt3a/3b by ZFP281 in pluripotent stem cells. Chromatin co-occupancy of ZFP281 and DNA hydroxylase TET1, which is dependent on the formation of R-loops in ZFP281-targeted gene promoters, undergoes a "high-low-high" bimodal pattern regulating dynamic DNA methylation and gene expression during the naive-formative-primed transitions. ZFP281 also safeguards DNA methylation in maintaining primed pluripotency. Our study demonstrates a previously unappreciated role for ZFP281 in coordinating DNMT3A/3B and TET1 functions to promote pluripotent state transitions.


Assuntos
Epigênese Genética , Células-Tronco Pluripotentes , Animais , Camundongos , Metilação de DNA/genética , Cromatina/metabolismo , DNA/metabolismo , Diferenciação Celular/genética , Camadas Germinativas/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo
14.
BMC Plant Biol ; 24(1): 32, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38183049

RESUMO

BACKGROUND: As a vital type of noncoding RNAs, circular RNAs (circRNAs) play important roles in plant growth and development and stress response. However, little is known about the biological roles of circRNAs in regulating the stability of male fertility restoration for cytoplasmic male sterility (CMS) conditioned by Gossypium harknessii cytoplasm (CMS-D2) cotton under high-temperature (HT) stress. RESULTS: In this study, RNA-sequencing and bioinformatics analysis were performed on pollen grains of isonuclear alloplasmic near-isogenic restorer lines NH [N(Rf1rf1)] and SH [S(Rf1rf1)] with obvious differences in fertility stability under HT stress at two environments. A total of 967 circRNAs were identified, with 250 differentially expressed under HT stress. We confirmed the back-splicing sites of eight selected circRNAs using divergent primers and Sanger sequencing. Tissue-specific expression patterns of five differentially expressed circRNAs (DECs) were also verified by RT-PCR and qRT-PCR. Functional enrichment and metabolic pathway analysis revealed that the parental genes of DECs were significantly enriched in fertility-related biological processes such as pollen tube guidance and cell wall organization, as well as the Pentose and glucuronate interconversions, Steroid biosynthesis, and N-Glycan biosynthesis pathways. Moreover, we also constructed a putative circRNA-mediated competing endogenous RNA (ceRNA) network consisting of 21 DECs, eight predicted circRNA-binding miRNAs, and their corresponding 22 mRNA targets, especially the two ceRNA modules circRNA346-miR159a-MYB33 and circRNA484-miR319e-MYB33, which might play important biological roles in regulating pollen fertility stability of cotton CMS-D2 restorer line under HT stress. CONCLUSIONS: Through systematic analysis of the abundance, characteristics and expression patterns of circRNAs, as well as the potential functions of their parent genes, our findings suggested that circRNAs and their mediated ceRNA networks acted vital biological roles in cotton pollen development, and might be also essential regulators for fertility stability of CMS-D2 restorer line under heat stress. This study will open a new door for further unlocking complex regulatory mechanisms underpinning the fertility restoration stability for CMS-D2 in cotton.


Assuntos
Gossypium , RNA Circular , Gossypium/genética , RNA Circular/genética , Citoplasma , Fertilidade/genética , RNA , Resposta ao Choque Térmico/genética
15.
Cell Biosci ; 14(1): 6, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38183147

RESUMO

BACKGROUND: Hair follicle stem cells (HFSCs) typically remain quiescent and are activated only during the transition from telogen to anagen to ensure that the hair follicle enters a new cycle. The metabolic behavior of stem cells in tissues is regulated by macroautophagy/autophagy, and changes in HFSC metabolism directly affect their activation and maintenance. However, the role of autophagy in the regulation of HFSC metabolism and function remains unclear. METHODS: Back skin samples were obtained from mice at different hair follicle cycle stages, and immunofluorescence staining was used to monitor autophagy in HFSCs. Mouse and human hair follicles were treated with rapamycin (Rapa, an autophagy activator) or 3-methyladenine (3-MA, an autophagy inhibitor). The effects of autophagy on the hair follicle cycle and HFSC were investigated by imaging, cell proliferation staining, and HFSC-specific marker staining. The influence and mechanism of autophagy on HFSC metabolism were explored using RNA sequencing, real-time polymerase chain reaction, immunohistochemical staining, and detection of lactate and glucose concentrations. Finally, the influence of autophagy-induced glycolysis on HFSC and the hair follicle cycle was verified by stem cell characteristics and in vivo functional experiments. RESULTS: Autophagy in HFSC was highest during the transition from telogen to anagen. Inhibiting autophagy with 3-MA led to early entry into catagen and prolonged telogen, whereas Rapa promoted autophagy and hair growth. Autophagy activated HFSC by increasing the expression and activity of HFSC lactate dehydrogenase (Ldha), thereby transforming HFSC metabolism into glycolysis. Inhibition of Ldha expression counteracted the effects of autophagy. CONCLUSIONS: Autophagy activated HFSC by promoting the transition from HFSC metabolism to glycolysis, ultimately initiating the hair follicle cycle and promoting hair growth.

16.
Nat Struct Mol Biol ; 31(1): 42-53, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177668

RESUMO

DNA cytosine methylation plays a vital role in repressing retrotransposons, and such derepression is linked with developmental failure, tumorigenesis and aging. DNA methylation patterns are formed by precisely regulated actions of DNA methylation writers (DNA methyltransferases) and erasers (TET, ten-eleven translocation dioxygenases). However, the mechanisms underlying target-specific oxidation of 5mC by TET dioxygenases remain largely unexplored. Here we show that a large low-complexity domain (LCD), located in the catalytic part of Tet enzymes, negatively regulates the dioxygenase activity. Recombinant Tet3 lacking LCD is shown to be hyperactive in converting 5mC into oxidized species in vitro. Endogenous expression of the hyperactive Tet3 mutant in mouse oocytes results in genome-wide 5mC oxidation. Notably, the occurrence of aberrant 5mC oxidation correlates with a consequent loss of the repressive histone mark H3K9me3 at ERVK retrotransposons. The erosion of both 5mC and H3K9me3 causes ERVK derepression along with upregulation of their neighboring genes, potentially leading to the impairment of oocyte development. These findings suggest that Tet dioxygenases use an intrinsic auto-regulatory mechanism to tightly regulate their enzymatic activity, thus achieving spatiotemporal specificity of methylome reprogramming, and highlight the importance of methylome integrity for development.


Assuntos
5-Metilcitosina , Dioxigenases , Animais , Camundongos , 5-Metilcitosina/metabolismo , Dioxigenases/genética , Dioxigenases/metabolismo , Retroelementos/genética , Metilação de DNA , Oócitos/metabolismo , Desmetilação
17.
Plant Biotechnol J ; 22(1): 148-164, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37715970

RESUMO

Rice false smut caused by Ustilaginoidea virens is a devastating rice (Oryza sativa) disease worldwide. However, the molecular mechanisms underlying U. virens-rice interactions are largely unknown. In this study, we identified a secreted protein, Uv1809, as a key virulence factor. Heterologous expression of Uv1809 in rice enhanced susceptibility to rice false smut and bacterial blight. Host-induced gene silencing of Uv1809 in rice enhanced resistance to U. virens, suggesting that Uv1809 inhibits rice immunity and promotes infection by U. virens. Uv1809 suppresses rice immunity by targeting and enhancing rice histone deacetylase OsSRT2-mediated histone deacetylation, thereby reducing H4K5ac and H4K8ac levels and interfering with the transcriptional activation of defence genes. CRISPR-Cas9 edited ossrt2 mutants showed no adverse effects in terms of growth and yield but displayed broad-spectrum resistance to rice pathogens, revealing a potentially valuable genetic resource for breeding disease resistance. Our study provides insight into defence mechanisms against plant pathogens that inactivate plant immunity at the epigenetic level.


Assuntos
Hypocreales , Oryza , Oryza/genética , Oryza/microbiologia , Histonas , Melhoramento Vegetal , Hypocreales/genética , Doenças das Plantas/microbiologia
18.
Stem Cell Rev Rep ; 20(2): 524-537, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38112926

RESUMO

Mesenchymal stem cells (MSCs) are adult stem cells that can be obtained, enriched and proliferated in vitro. They owned enormous potential in fields like regenerative medicine, tissue engineering and immunomodulation. However, though isolated from the same origin, MSCs are still essentially heterogeneous cell populations with different phenotypes and functions. This heterogeneity of MSCs significantly affects their therapeutic efficacy and brings obstacles to scientific research. Thus, reliable sorting technology which can isolate or purify MSC subpopulations with various potential and differentiation pathways is urgently needed. This review summarized principles, application status and clinical implications for these sorting methods, aiming at improving the understanding of MSC heterogeneity as well as providing fresh perspectives for subsequent clinical applications.


Assuntos
Células-Tronco Adultas , Células-Tronco Mesenquimais , Medicina Regenerativa , Engenharia Tecidual , Diferenciação Celular
19.
Chem Res Toxicol ; 37(1): 1-15, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38146056

RESUMO

Adverse health outcomes caused by environmental chemicals are often initiated via their interactions with proteins. Essentially, one environmental chemical may interact with a number of proteins and/or a protein may interact with a multitude of environmental chemicals, forming an intricate interaction network. Omics-wide protein-environmental chemical interaction profiling (PECI) is of prominent importance for comprehensive understanding of these interaction networks, including the toxicity mechanisms of action (MoA), and for providing systematic chemical safety assessment. However, such information remains unknown for most environmental chemicals, partly due to their vast chemical diversity. In recent years, with the continuous efforts afforded, especially in mass spectrometry (MS) based omics technologies, several ligand modification-free methods have been developed, and new attention for systematic PECI profiling was gained. In this Review, we provide a comprehensive overview on these methodologies for the identification of ligand-protein interactions, including affinity interaction-based methods of affinity-driven purification, covalent modification profiling, and activity-based protein profiling (ABPP) in a competitive mode, physicochemical property changes assessment methods of ligand-directed nuclear magnetic resonance (ligand-directed NMR), MS integrated with equilibrium dialysis for the discovery of allostery systematically (MIDAS), thermal proteome profiling (TPP), limited proteolysis-coupled mass spectrometry (LiP-MS), stability of proteins from rates of oxidation (SPROX), and several intracellular downstream response characterization methods. We expect that the applications of these ligand modification-free technologies will drive a considerable increase in the number of PECI identified, facilitate unveiling the toxicological mechanisms, and ultimately contribute to systematic health risk assessment of environmental chemicals.


Assuntos
Proteínas , Proteoma , Ligantes , Proteínas/química , Espectrometria de Massas/métodos , Proteólise , Proteoma/metabolismo
20.
ACS Appl Mater Interfaces ; 15(50): 58643-58650, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38062584

RESUMO

High-entropy oxides (HEOs) have gained significant interest in recent years due to their unique structural characteristics and potential to tailor functional properties. However, the electronic structure of the HEOs currently remains vastly unknown. In this work, combining magnetometry measurements, scanning transmission electron microscopy, and element-specific X-ray absorption spectroscopy, the electronic structure and magnetic properties of the perovskite-HEO La(Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)O3 epitaxial thin films are systemically studied. It is found that enhanced magnetic frustration emerges from competing exchange interactions of the five transition-metal cations with energetically favorable half-filled/full-filled electron configurations, resulting in an unprecedented large vertical exchange bias effect in the single-crystalline films. Furthermore, our findings demonstrate that the La(Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)O3 layer with a thickness down to 1 nm can be used as a pinning layer and strongly coupled with a ferromagnetic La0.7Sr0.3MnO3 layer, leading to a notable exchange bias and coercivity enhancement in a cooling field as small as 5 Oe. Our studies not only provide invaluable insight into the electronic structure of HEOs but also pave the way for a new era of large bias materials for spintronics devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...